Thermodynamics and Inflammation: Insights into Quantum Biology and Ageing

Author:

Nunn Alistair Victor William,Guy Geoffrey William,Bell Jimmy DavidORCID

Abstract

Inflammation as a biological concept has been around a long time and derives from the Latin “to set on fire” and refers to the redness and heat, and usually swelling, which accompanies injury and infection. Chronic inflammation is also associated with ageing and is described by the term “inflammaging”. Likewise, the biological concept of hormesis, in the guise of what “does not kill you, makes you stronger”, has long been recognized, but in contrast, seems to have anti-inflammatory and age-slowing characteristics. As both phenomena act to restore homeostasis, they may share some common underlying principles. Thermodynamics describes the relationship between heat and energy, but is also intimately related to quantum mechanics. Life can be viewed as a series of self-renewing dissipative structures existing far from equilibrium as vortexes of “negentropy” that ages and dies; but, through reproduction and speciation, new robust structures are created, enabling life to adapt and continue in response to ever changing environments. In short, life can be viewed as a natural consequence of thermodynamics to dissipate energy to restore equilibrium; each component of this system is replaceable. However, at the molecular level, there is perhaps a deeper question: is life dependent on, or has it enhanced, quantum effects in space and time beyond those normally expected at the atomistic scale and temperatures that life operates at? There is some evidence it has. Certainly, the dissipative adaptive mechanism described by thermodynamics is now being extended into the quantum realm. Fascinating though this topic is, does exploring the relationship between quantum mechanics, thermodynamics, and biology give us a greater insight into ageing and, thus, medicine? It could be said that hormesis and inflammation are expressions of thermodynamic and quantum principles that control ageing via natural selection that could operate at all scales of life. Inflammation could be viewed as a mechanism to remove inefficient systems in response to stress to enable rebuilding of more functional dissipative structures, and hormesis as the process describing the ability to adapt; underlying this is the manipulation of fundamental quantum principles. Defining what “quantum biological normality” is has been a long-term problem, but perhaps we do not need to, as it is simply an expression of one end of the normal quantum mechanical spectrum, implying that biology could inform us as to how we can define the quantum world.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),Astronomy and Astrophysics,Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3