The Impact of a Combined Battery Thermal Management and Safety System Utilizing Polymer Mini-Channel Cold Plates on the Thermal Runaway and Its Propagation

Author:

Graichen Henrik-Christian1ORCID,Boye Gunar1,Sauerhering Jörg2,Köhler Florian3,Beyrau Frank1

Affiliation:

1. Institute of Fluid Dynamics and Thermodynamics, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany

2. Department of Applied Biosciences and Process Engineering-Thermal Process and Energy Engineering, Anhalt University of Applied Sciences, 06366 Köthen, Germany

3. Institute of Apparatus and Environmental Technology, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany

Abstract

Lithium-ion batteries are widely used in mobile applications because they offer a suitable package of characteristics in terms of specific energy, cost, and life span. Nevertheless, they have the potential to experience thermal runaway (TR), the prevention and containment of which require safety measures and intensive thermal management. This study introduces a novel combined thermal management and safety application designed for large aspect-ratio battery cells such as pouches and thin prismatics. It comprises polymer-based mini-channel cold plates that can indirectly thermally condition the batteries’ faces with liquid. They are lightweight and space-saving, making them suitable for mobile systems. Furthermore, this study experimentally clarifies to which extent the application of polymer mini-channel cold plates between battery cells is suitable to delay TR by heat dissipation and to prevent thermal runaway propagation (TRP) to adjacent cells by simultaneously acting as a thermal barrier. NMC pouch cells of 12.5 Ah capacity were overcharged at 1 C to induce TR. Without cold plates, TR and TRP occurred within one hour. Utilizing the polymer mini-channel cold plates for face cooling, the overcharge did not produce a condition leading to cell fire in the same time frame. When the fluid inlet temperature was varied between 5 and 40 °C, the overcharged cell’s surface temperature peaked between 50 and 60 °C. Indications were found that thermal conditioning with the polymer cold plates significantly slowed down parts of the process chain before cell firing. Their peak performance was measured to be just under 2.2 kW/m2. In addition, thermal management system malfunction was tested, and evidence was found that the polymer cold plates prevented TRP to adjacent cells. In conclusion, a combined thermal management and safety system made of polymer mini-channel cold plates provides necessary TR-related safety aspects in lithium battery systems and should be further investigated.

Funder

Ministry of Science, Energy, Climate Protection, and Environment, Saxony-Anhalt, Germany

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

Reference113 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3