Apparent Aging during Accelerated Cycling Aging Test of Cylindrical Silicon Containing Li-Ion Cells

Author:

Morales Torricos Pablo1ORCID,Endisch Christian1ORCID,Lewerenz Meinert1ORCID

Affiliation:

1. Technische Hochschule Ingolstadt, Research Group Electromobility and Learning Systems, D-85049 Ingolstadt, Germany

Abstract

Accelerated cyclic aging tests are very important for research and industry to quickly characterize lithium-ion cells. However, the accentuation of stress factors and the elimination of rest periods lead to an apparent capacity fade, that can be subsequently recovered during a resting phase. This effect is attributed to the inhomogeneous lithium distribution in the anode and is observable with differential voltage analysis (DVA). We tested cylindrical 18,650 cells with Li(NixCoyAlz)O2-graphite/silicon chemistry during two cycling and resting phases. The capacity, the pulse resistance, the DVA, and the capacity difference analysis are evaluated for cells cycled at different average SOC and current rates. An apparent capacity loss of up to 12% was reported after 200 FCE for cells cycled under the presence of pressure gradients, while only 1% were at low-pressure gradients. The subsequent recovery was up to 80% of the apparent capacity loss in some cases. The impact of silicon cannot be estimated as it shows no features in the dV/dQ curves. We observe a recovery of apparent resistance increase, which is not reported for cells with pure graphite anodes. Finally, we demonstrate the strong impact of apparent aging for the lifetime prediction based on standard accelerated cyclic aging tests.

Funder

German Ministry of Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3