Abstract
Thermal management systems are integral to electric and hybrid vehicle battery packs for maximising safety and performance since high and irregular battery temperatures can be detrimental to these criteria. Lithium-ion batteries are the most commonly used in the electric vehicle (EV) industry because of their high energy and power density and long life cycle. Liquid cooling provides superior performance with low power draw and high heat transfer coefficient. Two liquid cooling designs-the Linear Channel Design (LCD) and Helical Channel Design (HCD)-underwent multiple numerical and geometrical optimisations, where inlet mass flow rate, channel diameter, and inlet and outlet locations were analysed using CFD (computational fluid dynamics). The primary objectives were to maintain maximum temperatures and thermal uniformity within the operational limits derived from the literature. These were both achieved with the LCD using a mass flow rate of 7.50E-05 kgs−1. The Tmax goal was met for the HCD but not the thermal uniformity goal. The LCD achieved 1.796 K lower in maximum temperature and 8.740 K lower in temperature difference compared to the HCD, proving itself superior in both metrics. The HCD required a higher mass flow rate than the LCD to regulate temperatures, resulting in an undesirably high power consumption.
Subject
Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology
Reference47 articles.
1. A review of techno-economic data for road transportation fuels;Renew. Sustain. Energy Rev.,2019
2. (2022, August 04). COP26 Declaration on Accelerating the Transition to 100% Zero Emission Cars and Vans, Available online: https://www.gov.uk/government/publications/cop26-declaration-zero-emission-cars-and-vans/cop26-declaration-on-accelerating-the-transition-to-100-zero-emission-cars-and-vans.
3. Current and future lithium-ion battery manufacturing;iScience,2021
4. Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles;Appl. Therm. Eng.,2015
5. Battery thermal models for hybrid vehicle simulations;J. Power Sources,2002
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献