A High-Performance Vortex Adjustment Design for an Air-Cooling Battery Thermal Management System in Electric Vehicles

Author:

Zhao Gang1ORCID,Wang Xiaolin1ORCID,Negnevitsky Michael1ORCID,Li Chengjiang12,Zhang Hengyun3ORCID,Cheng Yingyao1

Affiliation:

1. School of Engineering, University of Tasmania, Hobart, TAS 7005, Australia

2. School of Management, Guizhou University, Guiyang 550025, China

3. School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang, Shanghai 201620, China

Abstract

To boost the performance of the air-cooling battery thermal management system, this study designed a novel vortex adjustment structure for the conventional air-cooling battery pack used in electric vehicles. T-shape vortex generating columns were proposed to be added between the battery cells in the battery pack. This structure could effectively change the aerodynamic patterns and thermodynamic properties of the battery pack, including turbulent eddy frequency, turbulent kinetic energy, and average Reynolds number, etc. The modified aerodynamic patterns and thermodynamic properties increased the heat transfer coefficient with little increase in energy consumption and almost no additional cost. Different designs were also evaluated and optimized under different working conditions. The results showed that the cooling performance of the Design 1 improved at both low and high air flow rates. At a small flow rate of 11.88 L/s, the Tmax and ΔT of Design 1 are 0.85 K and 0.49 K lower than the conventional design with an increase in pressure drop of 0.78 Pa. At a relative high flow rate of 47.52 L/s, the Tmax and ΔT of the Design 1 are also 0.46 K and 0.13 K lower than the conventional design with a slight increase in pressure drop of 17.88 Pa. These results demonstrated that the proposed vortex generating design can improve the cooling performance of the battery pack, which provides a guideline for the design and optimization of the high-performance air-cooling battery thermal management systems in electric vehicles.

Funder

Australian Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3