Abstract
A novel energy storage mode based on the vehicle-to-grid (V2G) and vehicle-to-vehicle (V2V) concept will be greatly researched and applied as a new green solution to energy and environmental problems. However, the existing research on battery capacity decline in V2G applications has mainly focused on modeling the battery capacity to investigate its decline during vehicle charging and discharging, in order to reduce the battery capacity decline and evaluate its economics. A car-following model with the acceleration generalized force coupled with external resistance is proposed in the paper. A linear stability analysis was used to analyze the stability of the model. The stability of the traffic flow was improved when the value of the resistance coefficient increases. Then, the currents of different vehicles were also calculated according to the velocities. Moreover, the effect of different physical characteristics of driving on the decline of distributed energy storage batteries in the Internet of Vehicles (IoV) was investigated. The results suggest that in different road types and road slopes, vehicles which are at the end of the platoon position have less battery capacity degradation and better battery condition. It provides a reference for subsequent research related to V2G energy storage in the context of vehicle networking.
Funder
Natural Science Foundation of Shandong Province
Subject
Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology