The Multi-Parameter Fusion Early Warning Method for Lithium Battery Thermal Runaway Based on Cloud Model and Dempster–Shafer Evidence Theory

Author:

Xie Ziyi1,Zhang Ying1ORCID,Wang Hong1ORCID,Li Pan2,Shi Jingyi3,Zhang Xiankai3,Li Siyang1

Affiliation:

1. School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China

2. Wuhan Second Institute of Ship Design and Research, Wuhan 430205, China

3. EVE Power Co., Ltd., Jingmen 516006, China

Abstract

As the preferred technology in the current energy storage field, lithium-ion batteries cannot completely eliminate the occurrence of thermal runaway (TR) accidents. It is of significant importance to employ real-time monitoring and warning methods to perceive the battery’s safety status promptly and address potential safety hazards. Currently, the monitoring and warning of lithium-ion battery TR heavily rely on the judgment of single parameters, leading to a high false alarm rate. The application of multi-parameter early warning methods based on data fusion remains underutilized. To address this issue, the evaluation of lithium-ion battery safety status was conducted using the cloud model to characterize fuzziness and Dempster–Shafer (DS) evidence theory for evidence fusion, comprehensively assessing the TR risk level. The research determined warning threshold ranges and risk levels by monitoring voltage, temperature, and gas indicators during lithium-ion battery overcharge TR experiments. Subsequently, a multi-parameter fusion approach combining cloud model and DS evidence theory was utilized to confirm the risk status of the battery at any given moment. This method takes into account the fuzziness and uncertainty among multiple parameters, enabling an objective assessment of the TR risk level of lithium-ion batteries.

Funder

National Key Research and Development Program of China

National innovation and entrepreneurship training program for college students

Opening Fund of State Key Laboratory of Fire Science

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3