Online High-Resolution EIS of Lithium-Ion Batteries by Means of Compact and Low Power ASIC

Author:

Ria Andrea1ORCID,Manfredini Giuseppe1ORCID,Gagliardi Francesco1ORCID,Vitelli Michele2ORCID,Bruschi Paolo1,Piotto Massimo1ORCID

Affiliation:

1. Department of Information Engineering, University of Pisa, 56122 Pisa, Italy

2. Sensichips srl, 04011 Aprilia, Italy

Abstract

A compact electronic circuit capable of performing Electrochemical Impedance Spectroscopy (EIS) on either single Lithium-ion cells or modules formed by the series of two cells is presented. The proposed device, named Double Cell Management Unit (DCMU), constitutes an important improvement to a recently proposed cell management unit, which combined EIS acquisition functions with a multichannel sensor interface compatible with thermistors, strain-gauges and moisture detectors. The proposed circuit maintains the versatility of the previous version and significantly extends the EIS frequency range, allowing vector impedance measurements from 0.1 Hz to about 15 kHz. The capability of handling both single Lithium-ion cells or series of two cells is obtained by adding a few external components to the previous version. This also allowed increasing the stimulation current to a maximum amplitude of 200 mA, resulting in improved resolution. Experiments consisting in EIS acquisition performed on batteries of different capacity at different temperatures and states of charge are described. Estimated impedance resolution (standard deviation) is 20 μΩ obtained at 1 kHz with a stimulation current of 100 mA amplitude.

Funder

EU H2020 project 3beLiEVe

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transient Removal in Electrochemical Impedance Spectroscopy for Battery Testing;2024 IEEE International Instrumentation and Measurement Technology Conference (I2MTC);2024-05-20

2. The SensiTag: An Innovative BAP RFID TAG for Environmental Multi-sensing;Lecture Notes in Electrical Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3