Investigating the Role of Flow Plate Surface Roughness in Polymer Electrolyte Membrane Fuel Cells with the Use of Multiphysics Simulations

Author:

Gkionis-Konstantatos Odysseas1ORCID,Tavares Luciana1ORCID,Ebel Thomas1ORCID

Affiliation:

1. Centre for Industrial Electronics (CIE), Institute of Mechanical and Electrical Engineering, University of Southern Denmark, 6400 Sønderborg, Denmark

Abstract

This study investigates the influence of surface roughness on the performance of polymer electrolyte membrane fuel cells (PEMFCs) through computational simulations using COMSOL Multiphysics. Two distinct gas flow channel (GFC) models of serpentine and parallel GFC structures were analysed, featuring various surface roughness levels to examine their impact on gas pressure and velocity dynamics. Rough surfaces are modeled using trigonometric functions to replicate machining-induced variations. Finite element simulations were conducted, assessing the time-dependent relationship between gas pressure and velocity while considering different electrode phase potentials as a function of surface roughness. Rough surfaces generally enhance mass transport, water management, and current distribution compared to smooth surfaces. The results indicated that a surface roughness of approximately 1 µm optimizes PEMFC performance by balancing pressure and velocity, enhancing electrochemical reactions, and reducing excessive pressure drops within the cell. Notably, the 0.7 V operating voltage was found to be the most efficient, achieving rapid stabilization of pressure and velocity levels swiftly. The findings underscore the importance of precise control over GFC roughness to enhance PEMFC performance gains in commercial applications, especially when multiple cells are stacked to achieve high power outputs.

Funder

Syddansk Vækstforum-FuelCellManufacturing

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3