Remaining Useful Life Prediction of Lithium-Ion Batteries Based on a Cubic Polynomial Degradation Model and Envelope Extraction

Author:

Su Kangze1,Deng Biao1,Tang Shengjin1,Sun Xiaoyan2,Fang Pengya3,Si Xiaosheng4,Han Xuebing5

Affiliation:

1. Department of Mechanical Engineering, Rocket Force University of Engineering, Xi’an 710025, China

2. Department of Communication Engineering, Rocket Force University of Engineering, Xi’an 710025, China

3. School of Aero Engine, Zhengzhou University of Aeronautics, Zhengzhou 450046, China

4. Zhijian Laboratory, Rocket Force University of Engineering, Xi’an 710025, China

5. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China

Abstract

Remaining useful life (RUL) prediction has become one of the key technologies for reducing costs and improving safety of lithium-ion batteries. To our knowledge, it is difficult for existing nonlinear degradation models of the Wiener process to describe the complex degradation process of lithium-ion batteries, and there is a problem with low precision in parameter estimation. Therefore, this paper proposes a method for predicting the RUL of lithium-ion batteries based on a cubic polynomial degradation model and envelope extraction. Firstly, based on the degradation characteristics of lithium-ion batteries, a cubic polynomial function is used to fit the degradation trajectory and compared with other nonlinear degradation models for verification. Secondly, a subjective parameter estimation method based on envelope extraction is proposed that estimates the actual degradation trajectory by using the average of the upper and lower envelope curves of the degradation data of lithium-ion batteries and uses the maximum likelihood estimation (MLE) method to estimate the unknown model parameters in two steps. Finally, for comparison with several typical nonlinear models, experiments are carried out based on the practical degradation data of lithium-ion batteries. The effectiveness of the proposed method to improve the accuracy of RUL prediction for lithium-ion batteries was demonstrated in terms of the mean square error (MSE) of the model and MSE of RUL prediction.

Funder

Natural Science Basic Research Program of Shaanxi Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3