Recent Progress of Urea-Based Deep Eutectic Solvents as Electrolytes in Battery Technology: A Critical Review

Author:

Ammar Mohamed1,Ashraf Sherif2ORCID,Gonzalez-casamachin Diego Alexander1,Awotoye Damilola Tomi1ORCID,Baltrusaitis Jonas1ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Dr., Bethlehem, PA 18015, USA

2. Department of Physics, Faculty of Science, Suez University, Suez 43518, Egypt

Abstract

Urea, a basic chemical compound, holds diverse applications across numerous domains, ranging from agriculture to energy storage. Of particular interest is its role as a hydrogen bond donor (HBD). This specific characteristic has propelled its utilization as an essential component in crafting deep eutectic solvents (DESs) for battery electrolytes. Incorporating urea into DESs presents a promising avenue to address environmental concerns associated with traditional electrolytes, thereby advancing battery technology. Conventional electrolytes, often composed of hazardous and combustible solvents, pose significant environmental risks upon improper disposal potentially contaminating soil and water and threatening both human health and ecosystems. Consequently, there is a pressing need for eco-friendly alternatives capable of upholding high performance and safety standards. DESs, categorized as organic salts resulting from the blending of two or more compounds, have emerged as promising contenders for the next generation of electrolytes. Urea stands out among DES electrolytes by enhancing ion transport, widening the electrochemical window stability (ESW), and prolonging battery cycle life. Further, its non-toxic nature, limited flammability, and elevated thermal stability play pivotal roles in mitigating environmental concerns and safety issues associated with traditional electrolytes. Laboratory testing of urea-based DES electrolytes across various battery systems, including Al-ion, Na-ion, and Zn-ion batteries, has already been demonstrated. This review examines the evolution of urea-based DES electrolytes by elucidating their structure, molecular interaction mechanisms, performance attributes, and preparation methodologies.

Funder

Engineering for Agricultural Production Systems

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

Reference104 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3