Analysis and Investigation of Thermal Runaway Propagation for a Mechanically Constrained Lithium-Ion Pouch Cell Module

Author:

Aiello LuigiORCID,Hanzu IlieORCID,Gstrein GregorORCID,Ewert Eduard,Ellersdorfer ChristianORCID,Sinz WolfgangORCID

Abstract

In this paper, tests and analysis of thermal runaway propagation for commercial modules consisting of four 41 Ah Li-ion pouch cells are presented. Module samples were tested at 100% state-of-charge and mechanically constrained between two steel plates to provide thermal and mechanical contact between the parts. Voltage and temperature of each cell were monitored during the whole experiment. The triggering of the exothermal reactions was obtained by overheating one cell of the stack with a flat steel heater. In preliminary studies, the melting temperature of the separator was measured (from an extracted sample) with differential scanning calorimetry and thermogravimetric analysis techniques, revealing a tri-layers separator with two melting points (≈135 °C and ≈170 °C). The tests on module level revealed 8 distinct phases observed and analyzed in the respective temperature ranges, including smoking, venting, sparkling, and massive, short circuit condition. The triggering temperature of the cells resulted to be close to the melting temperature of the separator obtained in preliminary tests, confirming that the violent exothermal reactions of thermal runaway are caused by the internal separator failure. Postmortem inspections of the modules revealed the internal electrical failure path in one cell and the propagation of the internal short circuit in its active material volume, suggesting that the expansion of the electrolyte plays a role in the short circuit propagation at the single cell level. The complete thermal runaway propagation process was repeated on 5 modules and ended on average 60 s after the first thermal runaway triggered cell reached a top temperature of 1100 °C.

Funder

Österreichische Forschungsförderungsgesellschaft

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3