Abstract
Cycling Li-ion cells with large capacities requires high currents and hence an expensive measurement setup. Aging the Li-ion cell material in coin cells offers an orders-of-magnitude-lower power requirement to the battery tester. The preparation procedure used in this work allows one to build coin cells in a reproducible manner. The original 40 Ah pouch cells and the corresponding 4.3 mAh coin cells (PAT-Cell) utilizing electrode material from the original cells are cycled with 1C at different temperatures. The results show the same basic aging mechanisms in both cell types: loss of lithium inventory at room temperature but an increasing proportion of loss of active material toward higher temperatures. This is confirmed by similar activation energies in capacity degradation of the 40 Ah cells and the averaged coin cells. However, the capacity of the coin cells decreases faster over time. This is caused by diffusion of moisture into the coin cell housing. Nonetheless, the increasing water contamination over measurement time is not directly linked to the loss of capacity of the coin cells. Thus, the observed aging mechanisms of the 40 Ah cells can be qualitatively transferred to coin cell level.
Subject
Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献