Contextual Action Cues from Camera Sensor for Multi-Stream Action Recognition

Author:

Hong Jongkwang,Cho Bora,Hong Yong,Byun HyeranORCID

Abstract

In action recognition research, two primary types of information are appearance and motion information that is learned from RGB images through visual sensors. However, depending on the action characteristics, contextual information, such as the existence of specific objects or globally-shared information in the image, becomes vital information to define the action. For example, the existence of the ball is vital information distinguishing “kicking” from “running”. Furthermore, some actions share typical global abstract poses, which can be used as a key to classify actions. Based on these observations, we propose the multi-stream network model, which incorporates spatial, temporal, and contextual cues in the image for action recognition. We experimented on the proposed method using C3D or inflated 3D ConvNet (I3D) as a backbone network, regarding two different action recognition datasets. As a result, we observed overall improvement in accuracy, demonstrating the effectiveness of our proposed method.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning Innovations in Video Classification: A Survey on Techniques and Dataset Evaluations;Electronics;2024-07-11

2. Action Recognition and Fall Detection System Based on 3D Skeleton Model;Proceedings of the 2024 9th International Conference on Intelligent Information Technology;2024-02-23

3. Human Action Recognition Using Multi-Stream Fusion and Hybrid Deep Neural Networks;2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC);2023-10-01

4. Improving work detection by segmentation heuristics pre-training on factory operations video;PLOS ONE;2022-06-07

5. Tracking of Gymnast’s Limb Movement Trajectory Based on MEMS Inertial Sensor;Applied Bionics and Biomechanics;2022-04-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3