Deep Reinforcement Learning for Optimizing Restricted Access Window in IEEE 802.11ah MAC Layer

Author:

Jiang Xiaojun12,Gong Shimin12ORCID,Deng Chengyi1,Li Lanhua1ORCID,Gu Bo1ORCID

Affiliation:

1. School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China

2. Guangdong Provincial Key Laboratory of Fire Science and Intelligent Emergency Technology, Guangzhou 510006, China

Abstract

The IEEE 802.11ah standard is introduced to address the growing scale of internet of things (IoT) applications. To reduce contention and enhance energy efficiency in the system, the restricted access window (RAW) mechanism is introduced in the medium access control (MAC) layer to manage the significant number of stations accessing the network. However, to achieve optimized network performance, it is necessary to appropriately determine the RAW parameters, including the number of RAW groups, the number of slots in each RAW, and the duration of each slot. In this paper, we optimize the configuration of RAW parameters in the uplink IEEE 802.11ah-based IoT network. To improve network throughput, we analyze and establish a RAW parameters optimization problem. To effectively cope with the complex and dynamic network conditions, we propose a deep reinforcement learning (DRL) approach to determine the preferable RAW parameters to optimize network throughput. To enhance learning efficiency and stability, we employ the proximal policy optimization (PPO) algorithm. We construct network environments with periodic and random traffic in an NS-3 simulator to validate the performance of the proposed PPO-based RAW parameters optimization algorithm. The simulation results reveal that using the PPO-based DRL algorithm, optimized RAW parameters can be obtained under different network conditions, and network throughput can be improved significantly.

Funder

National Natural Science Foundation of China

Guangdong University Featured Innovation Program Project

Shenzhen Fundamental Research Program

Publisher

MDPI AG

Reference39 articles.

1. Vailshery, L.S. (2024, March 14). Internet of Things (IoT) and non-IoT Active Device Connections Worldwide from 2010 to 2025. Available online: https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/.

2. Wi-Fi Alliance (2024, March 14). Wi-Fi CERTIFIED HaLow™: Wi-Fi® for IoT Applications (2021). Available online: https://www.wi-fi.org/file/wi-fi-certified-halow-wi-fi-for-iot-applications-2021.

3. Wi-Fi Alliance (2024, March 14). Wi-Fi CERTIFIED HaLow™ Technology Overview. Available online: https://www.wi-fi.org/file/wi-fi-certified-halow-technology-overview-2021.

4. (2017). IEEE Std 802.11ah-2016 (Amendment to IEEE Std 802.11-2016, as Amended by IEEE Std 802.11ai-2016), IEEE.

5. Tian, L., Famaey, J., and Latré, S. (2016, January 21–24). Evaluation of the IEEE 802.11 ah restricted access window mechanism for dense IoT networks. Proceedings of the 2016 IEEE 17th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), IEEE, Coimbra, Portugal.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3