Collaborative 3D Scene Reconstruction in Large Outdoor Environments Using a Fleet of Mobile Ground Robots

Author:

Lewis JohnORCID,Lima Pedro U.ORCID,Basiri MeysamORCID

Abstract

Teams of mobile robots can be employed in many outdoor applications, such as precision agriculture, search and rescue, and industrial inspection, allowing an efficient and robust exploration of large areas and enhancing the operators’ situational awareness. In this context, this paper describes an active and decentralized framework for the collaborative 3D mapping of large outdoor areas using a team of mobile ground robots under limited communication range and bandwidth. A real-time method is proposed that allows the sharing and registration of individual local maps, obtained from 3D LiDAR measurements, to build a global representation of the environment. A conditional peer-to-peer communication strategy is used to share information over long-range and short-range distances while considering the bandwidth constraints. Results from both real-world and simulated experiments, executed in an actual solar power plant and in its digital twin representation, demonstrate the reliability and efficiency of the proposed decentralized framework for such large outdoor operations.

Funder

Fundação para a Ciência e a Tecnologia

ISR/LARSyS Strategic Funding

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Outdoor Environment Reconstruction with Deep Learning on Radio Propagation Paths;2024 International Wireless Communications and Mobile Computing (IWCMC);2024-05-27

2. Cooperative 3D Exploration and Mapping using Distributed Multi-Robot Teams;2024 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC);2024-05-02

3. A Compact Handheld Sensor Package with Sensor Fusion for Comprehensive and Robust 3D Mapping;Sensors;2024-04-12

4. GEERS: Georeferenced Enhanced EKF Using Point Cloud Registration and Segmentation;IEEE Robotics and Automation Letters;2024-02

5. Real-Time 3D Map Building in a Mobile Robot System with Low-Bandwidth Communication;Robotics;2023-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3