Using Static Concentrator Technology to Achieve Global Energy Goal

Author:

Alamoudi Abdullah,Saaduddin Syed MuhammadORCID,Munir Abu Bakar,Muhammad-Sukki FirdausORCID,Abu-Bakar Siti Hawa,Mohd Yasin Siti Hajar,Karim RidoanORCID,Bani Nurul Aini,Abubakar Mas’ud Abdullahi,Ardila-Rey Jorge AlfredoORCID,Prabhu Radhakrishna,Sellami NazmiORCID

Abstract

Solar energy has demonstrated promising prospects in satisfying energy requirements, specifically through solar photovoltaic (PV) technology. Despite that, the cost of installation is deemed as the main hurdle to the widespread uptake of solar PV systems due to the use of expensive PV material in the module. At this point, we argue that a reduction in PV cost could be achieved through the usage of concentrator. A solar concentrator is a type of lens that is capable of increasing the collection of sun rays and focusing them onto a lesser PV area. The cost of the solar module could then be reduced on the assumption that the cost of introducing the solar concentrator in the solar module design is much lower than the cost of the removed PV material. Static concentrators, in particular, have great promise due to their ability to be integrated at any place of the building, usually on the building facade, windows and roof, due to their low geometrical concentration. This paper provides a historic context on the development of solar concentrators and showcases the latest technological development in static PV concentrators including non-imaging compound parabolic concentrator, V-trough, luminescent solar concentrator and quantum dot concentrator. We anticipated that the static low concentrating PV (LCPV) system could serve to enhance the penetration of PV technology in the long run to achieve the Sustainable Development Goal (SDG) 7—to open an avenue to affordable, reliable, sustainable, and modern energy for all by 2030.

Funder

Universiti Teknologi Malaysia

Chilean Research Council (CONICYT)

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference85 articles.

1. World Energy Outlook 2018,2018

2. The Welfare Impact of Rural Electrification: A Reassessment of the Costs and Benefits,2008

3. Energy and Climate Change,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3