RNA-Sequencing Muscle Plasticity to Resistance Exercise Training and Disuse in Youth and Older Age

Author:

Fernandez-Gonzalo RodrigoORCID,Willis Craig R. G.,Etheridge Timothy,Deane Colleen S.ORCID

Abstract

Maintenance of skeletal muscle mass and function is critical to health and wellbeing throughout the lifespan. However, disuse through reduced physical activity (e.g., sedentarism), immobilisation, bed rest or microgravity has significant adverse effects on skeletal muscle health. Conversely, resistance exercise training (RET) induces positive muscle mass and strength adaptations. Several studies have employed microarray technology to understand the transcriptional basis of muscle atrophy and hypertrophy after disuse and RET, respectively, to devise fully effective therapeutic interventions. More recently, rapidly falling costs have seen RNA-sequencing (RNA-seq) increasingly applied in exploring muscle adaptations to RET and disuse. The aim of this review is to summarise the transcriptional responses to RET or disuse measured via RNA-seq in young and older adults. We also highlight analytical considerations to maximise the utility of RNA-seq in the context of skeletal muscle research. The limited number of muscle transcriptional signatures obtained thus far with RNA-seq are generally consistent with those obtained with microarrays. However, RNA-seq may provide additional molecular insight, particularly when combined with data-driven approaches such as correlation network analyses. In this context, it is essential to consider the most appropriate study design parameters as well as bioinformatic and statistical approaches. This will facilitate the use of RNA-seq to better understand the transcriptional regulators of skeletal muscle plasticity in response to increased or decreased use.

Funder

Swedish National Space Agency

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3