Digital Twin Formation Method for Distributed Generation Plants of Cyber–Physical Power Supply Systems

Author:

Bulatov YuriORCID,Kryukov Andrey,Batuhtin Andrey,Suslov KonstantinORCID,Korotkova Ksenia,Sidorov DenisORCID

Abstract

The purpose of the study presented in the article was to develop a method for the formation of digital twins for distributed generation plants operating as part of cyber–physical power supply systems. A method of forming a digital twin for a system for automatic regulation of the voltage and rotor speed of a synchronous generator is considered. The structure of a digital twin is presented in the form of a multiply connected model using experimental data. The possibility of using a fuzzy inference system, artificial neural networks, and a genetic algorithm for solving the problem is shown. As a result of the research, neuro-fuzzy models of the elements of the distributed generation plant were obtained, which are an integral part of the digital twin. Based on the simulation results, the following conclusions were drawn: the proposed method for constructing an optimized fuzzy model gives acceptable results when compared with experimental data and shows practical applicability in constructing a digital twin. In the future, in order to simplify the model, it is necessary to solve the problem of optimizing the number of rules in the fuzzy inference system. It is also advisable to direct further research to the formation of a complete hierarchical fuzzy system that connects all elements of the digital twin.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Verification and Validation of Rotating Machinery Using Digital Twin;ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering;2024-01-08

2. Cyber-physical security in a stand-alone photovoltaic system for rural electrification;Next-Generation Cyber-Physical Microgrid Systems;2024

3. Preface to “Model Predictive Control and Optimization for Cyber-Physical Systems”;Mathematics;2023-02-16

4. Digital twin‐based online tools for electric power communication system training: Online digital twin power communication system;IET Generation, Transmission & Distribution;2022-11-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3