The Kinematics of a Bipod R2RR Coupling between Two Non-Coplanar Shafts

Author:

Alaci Stelian,Doroftei IoanORCID,Ciornei Florina-Carmen,Romanu Ionut-Cristian,Doroftei Ioan Alexandru

Abstract

The paper presents a new solution for motion transmission between two shafts with non-intersecting axes. The structural considerations fundament the existence in the structure of the mechanism of three revolute pairs and a bipod contact. Compared to classical solutions, where linkages with cylindrical pairs are used, our solution proposes a kinematical chain also containing higher pairs. Due to the presence of a higher pair, the transmission is much simpler, the number of elements decreases, and as a consequence, the kinematical study is straightforward. Regardless, the classical analysis of linkages cannot be applied because of the presence of the higher pair. For the proposed spatial coupling, the transmission ratio is expressed as a function of constructive parameters. The positional analysis of the mechanism cannot be performed using the Hartenberg–Denavit method due to the presence of a bipod contact, and instead, the geometrical conditions of existence for the bipod contact are applied. The Hartenberg–Denavit method requires the replacement of the bipodic coupling with a kinematic linkage with cylindrical (revolute and prismatic) pairs, resulting in complicated analytical calculus. To avoid this aspect, the geometrical conditions required by the bipod coupling were expressed in vector form, and thus, the calculus is significantly reduced. The kinematical solution for the proposed transmission can be obtained in two ways: first, by considering the equivalent transmission containing only cylindrical pairs and applying the classical analysis methods; second, by directly expressing the condition of definition for the higher pairs (bipodic pair) in vector form. The last method arrives at a simpler solution for which analytical relations for the positional parameters are obtained, with one exception where numerical calculus is needed (but the precision of this parameter is controlled). The analytical kinematics results show two possibilities of building the actual mechanism with the same constructive parameters. The rotation motions from the revolute pairs, internal and driven, and the motions from the bipod joint were obtained through numerical methods since the equations are very intricate and cannot be solved analytically. The excellent agreement validates the theoretical solutions obtained and the possibility of applying such mechanisms in technical applications. The constructive solution exemplified here is simple and robust.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3