Closed-Form Solutions for Locating Heat-Concentrated Sources Using Temperature Difference

Author:

Sun Daoyuan,Wu Yifan,Dong LongjunORCID,Luo Qiaomu

Abstract

The closed-form solution, one of the effective and sufficient optimization methods, is usually less computationally burdensome than iterative and nonlinear minimization in optimization problems of heat source localization. This work presents two-dimensional, closed-form solutions for locating heat-concentrated sources using temperature differences for known and unknown temperature gradient systems. The nonlinear location equations for heat-concentrated source location are simplified to linear equations, and they are solved directly to obtain the analytical solution. To validate the accuracy of the proposed analytical solutions, three numerical examples of heat source localization were conducted. Results show that the proposed analytical solutions have a higher accuracy than iterative results by Levenberg–Marquardt. The locating accuracy for the three sources using AS-KTG improved by 94.82%, 90.40%, and 92.77%, while the locating accuracy for the three sources using AS-UTG improved by 68.94%, 16.72%, and 46.86%, respectively. It is concluded that the proposed method can locate the heat sources using temperatures and coordinates of sensors without the need for a heat transfer coefficient, a heat transfer rate, and thermal conductivity. These proposed analytical solutions can provide a new approach to locating heat sources for more complicated conditions using temperature differences, such as the localization of geothermal sources and nuclear waste leak points.

Funder

International (Regional) Cooperation and Exchange Program of National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3