Vehicle Target Detection Method for Wide-Area SAR Images Based on Coarse-Grained Judgment and Fine-Grained Detection

Author:

Song Yucheng1,Wang Shuo2,Li Qing1,Mu Hongbin2,Feng Ruyi3,Tian Tian1ORCID,Tian Jinwen1

Affiliation:

1. School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China

2. Beijing Institute of Astronautical Systems Engineering, Beijing 100076, China

3. School of Computer Science, China University of Geosciences, Wuhan 430074, China

Abstract

The detection of vehicle targets in wide-area Synthetic Aperture Radar (SAR) images is crucial for real-time reconnaissance tasks and the widespread application of remote sensing technology in military and civilian fields. However, existing detection methods often face difficulties in handling large-scale images and achieving high accuracy. In this study, we address the challenges of detecting vehicle targets in wide-area SAR images and propose a novel method that combines coarse-grained judgment with fine-grained detection to overcome these challenges. Our proposed vehicle detection model is based on YOLOv5, featuring a CAM attention module, CAM-FPN network, and decoupled detection head, and it is strengthened with background-assisted supervision and coarse-grained judgment. These various techniques not only improve the accuracy of the detection algorithms, but also enhance SAR image processing speed. We evaluate the performance of our model using the Wide-area SAR Vehicle Detection (WSVD) dataset. The results demonstrate that the proposed method achieves a high level of accuracy in identifying vehicle targets in wide-area SAR images. Our method effectively addresses the challenges of detecting vehicle targets in wide-area SAR images, and has the potential to significantly enhance real-time reconnaissance tasks and promote the widespread application of remote sensing technology in various fields.

Funder

National Natural Science Foundation of China

National Key Laboratory Fund

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3