Spatial Quantitative Model of Human Activity Disturbance Intensity and Land Use Intensity Based on GF-6 Image, Empirical Study in Southwest Mountainous County, China

Author:

Zhang Xuedong,Wang Xuedi,Zhou Zexu,Li Mengwei,Jing ChangfengORCID

Abstract

Vigorous human activities have strengthened the development and utilization of land, causing huge damage to the earth’s surface, while mining the disturbance pattern of human activities can capture the influence process and spatial interaction between human activities and land use. Therefore, in order to explore the inherent relationship between human activities and land use in mountainous counties, a spatial quantitative model of human activity disturbance intensity and land use intensity was proposed based on GF-6 image, traffic data, and socioeconomic data. The model can quantitatively evaluate the disturbance intensity of human activity and land use intensity from “production-living-ecological space”, and unfold the correlation between human activity disturbance intensity and land use intensity with Pearson correlation coefficient and bivariate spatial autocorrelation method. Our study presents several key findings: (1) the spatial difference of human activity disturbance is significant in Mianzhu City, and it has steady aggregation (Moran’s I index is 0.929), showing a decreasing trend from the southeast to the northwest area; (2) there is a strong positive correlation between the disturbance intensity of human activity and the intensity of land use with Pearson value 0.949; (3) among the eight selected factors, the proportion of construction land area plays a leading role in the disturbance intensity of human activity in Mianzhu City, while the township final account data have the least impact. The study results can provide an important reference for the quantitative identification and evaluation of human disturbances in similar cities and the coordinated development of the human–land relationship.

Funder

the Major Project of High-Resolution Earth Observation System

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3