Forest Carbon Density Estimation Using Tree Species Diversity and Stand Spatial Structure Indices

Author:

Li Tao1ORCID,Wu Xiao-Can1,Wu Yi1,Li Ming-Yang1ORCID

Affiliation:

1. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

Abstract

The forest spatial structure and diversity of tree species, as the important evaluation indicators of forest quality, are key factors affecting forest carbon storage. To analyze the impacts of biodiversity indices and stand spatial structure on forest carbon density, five tree diversity indices were calculated from three aspects of richness, diversity and evenness, and three indices (Reineke’s stand density index, Hegyi’s competition index and Simple mingling degree) were calculated from stand spatial structure. The relationships between these eight indices and forest carbon density were explored using the Structural Equation Model (SEM). Then, these eight indices were used as characteristic variables to predict the aboveground carbon density of trees (abbreviated as forest carbon density) in the sample plots of the National Forest Resources Continuous Inventory (NFCI) in Shaoguan City in 2017. Multiple Linear Regression (MLR) and four typical machine learning models of Random Forest (RF), Tree-based Piecewise Linear Model (M5P), Artificial Neural Network (ANN) and Support Vector Regression (SVR) were used to predict the forest carbon density. The results show that: (1) Based on the analysis results of the structural equation model (SED), the species diversity and forest stand spatial structure have greater impacts on carbon density. (2) The R2 of all the five prediction models is greater than 0.6, among which the random forest model is the highest. (3) Based on the calculation results of optimal model of RF, the mean forest carbon density of Shaoguan city in 2017 was 43.176 tC/ha. The forest carbon density can be accurately estimated based on the species diversity index and stand spatial structure with machine learning algorithms. Therefore, a new method for the prediction of forest carbon density and carbon storage using species diversity indices and stand spatial structure can be explored. By analyzing the impacts of different biodiversity indices and stand spatial structure on forest carbon density, a scientific reference for the making of management measures for increasing forest carbon sinks and reducing emissions can be provided.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

Reference63 articles.

1. Climate change and developing countries;Winkler;S. Afr. J. Sci.,2005

2. The IPCC Sixth Assessment Report WGIII climate assessment of mitigation pathways: From emissions to global temperatures;Kikstra;Geosci. Model Dev.,2022

3. Stocker (2014). Climate Change 2013, Cambridge University Press.

4. Carbon Dioxide Concentration, Photosynthesis, and Dry Matter Production;Kramer;Bioscience,1981

5. Forest ecosystems: Concepts and management;Zedaker;For. Sci.,1986

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3