Hippocampal Excitatory Synaptic Transmission and Plasticity Are Differentially Altered during Postnatal Development by Loss of the X-Linked Intellectual Disability Protein Oligophrenin-1

Author:

Cresto NoemieORCID,Lebrun Nicolas,Dumont Florent,Letourneur Franck,Billuart PierreORCID,Rouach NathalieORCID

Abstract

Oligophrenin-1 (OPHN1) is a Rho-GTPase-activating protein (RhoGAP), whose mutations are associated with X-linked intellectual disability (XLID). OPHN1 is enriched at the synapse in both pre- and postsynaptic compartments, where it regulates the RhoA/ROCK/MLC2 signaling pathway, playing a critical role in cytoskeleton remodeling and vesicle recycling. Ophn1 knockout (KO) adult mice display some behavioral deficits in multiple tasks, reminiscent of some symptoms in the human pathology. We also previously reported a reduction in dendritic spine density in the adult hippocampus of KO mice. Yet the nature of the deficits occurring in these mice during postnatal development remains elusive. Here, we show that juvenile KO mice present normal basal synaptic transmission, but altered synaptic plasticity, with a selective impairment in long-term depression, but no change in long-term potentiation. This contrasts with the functional deficits that these mice display at the adult stage, as we found that both basal synaptic transmission and long-term potentiation are reduced at later stages, due to presynaptic alterations. In addition, the number of excitatory synapses in adult is increased, suggesting some unsuccessful compensation. Altogether, these results suggest that OPHN1 function at synapses is differentially affected during maturation of the brain, which provides some therapeutic opportunities for early intervention.

Funder

Agence Nationale de la Recherche

Fondation Jérôme-Lejeune

European Research Council

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3