Mechanisms of A-Type Lamin Targeting to Nuclear Ruptures Are Disrupted in LMNA- and BANF1-Associated Progerias

Author:

Sears Rhiannon M.ORCID,Roux Kyle J.ORCID

Abstract

Mutations in the genes LMNA and BANF1 can lead to accelerated aging syndromes called progeria. The protein products of these genes, A-type lamins and BAF, respectively, are nuclear envelope (NE) proteins that interact and participate in various cellular processes, including nuclear envelope rupture and repair. BAF localizes to sites of nuclear rupture and recruits NE-repair machinery, including the LEM-domain proteins, ESCRT-III complex, A-type lamins, and membranes. Here, we show that it is a mobile, nucleoplasmic population of A-type lamins that is rapidly recruited to ruptures in a BAF-dependent manner via BAF’s association with the Ig-like β fold domain of A-type lamins. These initially mobile lamins become progressively stabilized at the site of rupture. Farnesylated prelamin A and lamin B1 fail to localize to nuclear ruptures, unless that farnesylation is inhibited. Progeria-associated LMNA mutations inhibit the recruitment affected A-type lamin to nuclear ruptures, due to either permanent farnesylation or inhibition of BAF binding. A progeria-associated BAF mutant targets to nuclear ruptures but is unable to recruit A-type lamins. Together, these data reveal the mechanisms that determine how lamins respond to nuclear ruptures and how progeric mutations of LMNA and BANF1 impair recruitment of A-type lamins to nuclear ruptures.

Funder

National Institutes of Health

National Institute of General Medical Sciences

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3