Body Calibration: Automatic Inter-Task Mapping between Multi-Legged Robots with Different Embodiments in Transfer Reinforcement Learning

Author:

Ikeda Satoru,Kono Hitoshi,Watanabe Kaori,Suzuki Hidekazu

Abstract

Machine learning algorithms are effective in realizing the programming of robots that behave autonomously for various tasks. For example, reinforcement learning (RL) does not require supervision or data sets; the RL agent explores solutions by itself. However, RL requires a long learning time, particularly for actual robot learning situations. Transfer learning (TL) in RL has been proposed to address this limitation. TL realizes fast adaptation and decreases the problem-solving time by utilizing the knowledge of the policy, value function, and Q-function from RL. Taylor proposed TL using inter-task mapping that defines the correspondence between the state and action between the source and target domains. Inter-task mapping is defined based on human intuition and experience; therefore, the effect of TL may not be obtained. The difference in robot shapes for TL is similar to the cognition in the modification of human body composition, and automatic inter-task mapping can be performed by referring to the body representation that is assumed to be stored in the human brain. In this paper, body calibration is proposed, which refers to the physical expression in the human brain. It realizes automatic inter-task mapping by acquiring data modeled on a body diagram that illustrates human body composition and posture. The proposed method is evaluated in a TL situation from a computer simulation of RL to actual robot control with a multi-legged robot.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Reference20 articles.

1. Reinforcement Learning: An Introduction;Sutton,1998

2. Reinforcement learning in robotics: A survey

3. Transfer in Reinforcement Learning Domains;Taylor,2009

4. Reinforcement Learning—State of the art;Lazaric,2012

5. Transfer Learning Method Using Ontology for Heterogeneous Multi-agent Reinforcement Learning

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3