Synthesis and Cytotoxicity Studies of Poly(1,4-butanediol citrate) Gels for Cell Culturing

Author:

Bandzerewicz Aleksandra1ORCID,Niebuda Klara1,Gadomska-Gajadhur Agnieszka1ORCID

Affiliation:

1. Faculty of Chemistry, Warsaw University of Technology, 00-662 Warsaw, Poland

Abstract

One of the main branches of regenerative medicine is biomaterials research, which is designed to develop and study materials for regenerative therapies, controlled drug delivery systems, wound dressings, etc. Research is continually being conducted to find biomaterials—especially polymers—with better biocompatibility, broader modification possibilities and better application properties. This study describes a potential biomaterial, poly(1,4-butanediol citrate). The gelation time of poly(1,4-butanediol citrate) was estimated. Based on this, the limiting reaction time and temperature were determined to avoid gelling of the reaction mixture. Experiments with different process conditions were carried out, and the products were characterised through NMR spectra analysis. Using statistical methods, the functions were defined, describing the dependence of the degree of esterification of the acid groups on the following process parameters: temperature and COOH/OH group ratio. Polymer films from the synthesised polyester were prepared and characterised. The main focus was assessing the initial biocompatibility of the materials.

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3