LMS/RLS/OCTAVE Vibration Controls of Cold Orbital Forging Machines for Improving Quality of Forged Vehicle Parts

Author:

Chen MingzhangORCID,Ning Xinfei,Zhou Zijian,Shu Yuwen,Tang Yun,Cao Yang,Shang Xuebing,Han Xinghui

Abstract

Cold orbital forging (COF) as an advanced incremental metal-forming technology has been widely used in processing vehicle parts. During the COF process, the vibration on the COF machine injures the service life of the machine and the quality of the forged part. The study of the vibration control of the COF machine is therefore necessary. In this study, the dynamic model of the COF machine is established, and the vibration performances of some key positions are obtained using Matlab&Simulink software. Subsequently, the vibration performances are effectively verified by conducting a vibration test experiment. Based on the dynamics model of the COF machine and Matlab&Simulink software, least-mean-squares (LMS), recursive least-squares (RLS) and OCTAVE vibration-control algorithms are applied to reduce the vibration. Comparing the vibration performances of the COF machine, these vibration-control algorithms are useful for reducing the vibration of the machine, which improves the service life of the machine and the quality of the forged part. Based on the vibration performances of the COF machine, the effects of LMS and RLS vibration controls are better than the OCTAVE, and they also obviously reduce the vibration of the COF machine. The vibration-control algorithms are first to be applied to reduce the vibration of the COF machines in this study, which will be beneficial to future research on the vibration controls of metal-forming machines and other mechanical systems.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of China Youth Fund

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Automotive Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3