Abstract
As a biostimulant, amino acids play crucial roles in enhancing plant growth and development. These roles, combined with the ability to be approved for organic usage, make amino acids a good choice for sustainable farming systems. This work investigates the effect of onion seed priming with different exogenous amino acids, specifically the impact of seed priming in enhancing a diverse range of morpho-physiological responses of onion seedlings. Here, we primed onion seeds (Cultivar Giza 6) with ten exogenous amino acids. Based on the growth parameters of onion seedlings, data showed that glutamine significantly improved the most studied parameters. Germination percentage (GP) ranged from 85% in Methionine (Met) to 98.5% in Proline (Pro) and Tryptophan (Try), with 10% over the control treatment. Glutamine (Glu) enhanced the vigor index (VI) of onion, giving the seeds a high ability to produce normal seedlings. The most extended root system (≥3.3 cm) was obtained from Glu, Glycine (Gly), Pro, and Try treatments. The maximum shoot length was obtained from treatments (Glu and Try) with more than 60% over control. Priming onion seeds with amino acids (AAs) increased chlorophyll contents compared with non-primed seeds. Glutamine and Threonine (Thr) had the highest results (122 and 127 μg/g fresh weight, respectively), while the Glu treatment registered the highest Carotene contents with 50% over the control treatment. Furthermore, the data illustrate that the principal component analysis-1 (PCA1) indicates 67.2% variability, and PCA2 indicates 14.8% variability. Strong positive correlations were observed between germination percentage, root length, shoot length, dry matter, chlorophyll a, and carotene. The study concluded that the primed onion seeds by glutamine, proline, and tryptophan had the best germination rates.
Funder
RUDN University Strategic Academic Leadership Program
Ministry of Higher Education, Egypt
Subject
Horticulture,Plant Science
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献