Quality Responses of Table Grapes ‘Flame Seedless’ as Effected by Foliarly Applied Micronutrients

Author:

Ali Irfan,Wang XiukangORCID,Abbas Wazir Mohsin,Hassan Mahmood Ul,Shafique Muhammad,Tareen Mohammad Javed,Fiaz SajidORCID,Ahmed Waseem,Qayyum AbdulORCID

Abstract

Micronutrient (iron, zinc and boron) deficiencies are a basic and prominent factor affecting grape quality and yield in the Pothwar region. To overcome these deficiencies, different levels of micronutrients were applied foliarly on grapevines at five different berry developmental stages during two consecutive growing seasons (2018 and 2019). The data suggested that foliar treatment of micronutrients significantly increased the yield, number of bunches per vine, bunch weight, yield per vines, bunch length, berry number per cluster, berry diameter, berry weight and cluster compactness. The biochemical quality attributes of berries, including sugars (reducing, non-reducing as well as total sugars), ascorbic acid content, pH and TSS values, were at their highest levels in grapevines supplemented with Fe, Zn and B treatment at 200 ppm, respectively, i.e., the highest concentrations used. Biochemical leaf values, including chlorophyll a and b and leaf micronutrient content (Fe, Zn and B), were also highest in grapevines that were sprayed with Fe, Zn and B at 200 ppm. Overall, the results revealed that the performance of grapevine cv. ‘Flame Seedless’ growing in agroclimatic conditions of the Pothwar region was improved as a result of the foliar application of Fe, Zn and B at 200 ppm. The results also suggested that a further increase in the concentration of each nutrient might be helpful to obtain berries of improved quantity and quality.

Funder

Natural Science Basic Research Program of Shaanxi Province

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Reference75 articles.

1. Grapes;Venkitasamy,2019

2. Health benefits of grapes polyphenols;Imran;J. Environ. Agric. Sci.,2017

3. Pheno-physiological revelation of grapes germplasm grown in Faisalabad, Pakistan;Khan;Int. J. Agric. Biol.,2011

4. Soil Salinity, Salt Tolerance, and Growth Potential of Horticultural and Landscape Plants;Blaylock,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3