Screening of Morphophysiological, Anatomical, and Ultrastructural Traits to Improve the Elite Genotype Selection in Sugarcane (Saccharum officinarum L.)

Author:

Pompelli Marcelo F.ORCID,Jarma-Orozco AlfredoORCID,Rodríguez-Páez LuisORCID

Abstract

Sugarcane is a highly productive crop with high water requirements. In addition, its growth and sugar content are limited by the water deficit, a major problem affecting agriculture due to climate change. However, monitoring strategies are being developed worldwide that seek to increase productivity in the same area and with less water consumption. The sugarcane plants are produced sugar table, ethanol, and, from the hydrolysis of biomass, produce second-generation bioethanol, in addition to generating energy in thermoelectric plants. This research described the strategies and mechanisms used by sugarcane to tolerate water deficit. For this, a series of physiological, biochemical, enzymatic, morphological, anatomical, and ultrastructural analyses were developed. We used four commercial varieties of sugarcane, two tolerant and two sensitives, which were tested in all phases of the study. It was concluded that the variety RB92579 is drought tolerant as well as RB867515 and RB72454 genotype is sensitive to drought stress. Therefore, we proposed that variety RB855536 be assigned as an intermediary due to tolerance and sensitivity to water deficit.

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3