Ascophyllum nodosum and Silicon-Based Biostimulants Differentially Affect the Physiology and Growth of Watermelon Transplants under Abiotic Stress Factors: The Case of Drought

Author:

Bantis FilipposORCID,Koukounaras AthanasiosORCID

Abstract

Climate change is an inevitable process characterized by an abrupt increase in global temperature and a decrease in precipitations leading to drought incidents. Biostimulants could be a valuable tool for mitigating these harsh conditions. The objective of our study was to test the efficiency of two biostimulants, a silicon-based seaweed and the seaweed Ascophyllum nodosum, to mitigate the drought stress endured by watermelon transplants during the first few weeks after transplanting. In order to achieve this, three water treatments (100%, 75%, and 50% of field capacity) were applied in pots. Important growth parameters (leaf number, fresh weight, and plant area) deteriorated depending on water availability. This was also the case for the root system development displayed by root dry weight, total length, and surface area. It is the first time the OJIP transient has been evaluated after the application of A. nodosum for drought-stressed plants. Chlorophyll fluorescence parameters showed that the photosynthetic apparatus was more stressed when A. nodosum was applied, especially in the harshest conditions (i.e., 50% field capacity). Overall, the silicon-based biostimulant failed to demonstrate drought-mitigating potential compared to the non-treated counterparts. On the other hand, A. nodosum alleviated the negative effects of water deficit, especially in the harshest conditions.

Funder

European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH—CREATE—INNOVATE

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3