Temperature and Daylength Effects on Growth and Floral Initiation in Biennial-Fruiting Blackberry

Author:

Sønsteby Anita1ORCID,Heide Ola M.2

Affiliation:

1. Department of Horticulture, Norwegian Institute of Bioeconomy Research (NIBIO), Nylinna 226, NO-2849 Kapp, Norway

2. Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NO-1432 Ås, Norway

Abstract

Little is known about the environmental control of growth and flower bud initiation (FBI) in commercial blackberries. We studied the processes in the cultivars ‘Lock Ness’, ’Ouachita’ and ‘Sweet Royalla’ at 12, 16 and 20 °C in a daylight phytotron under naturally decreasing autumn daylength at Ås, Norway (59°40′ N). Growth rate increased with increasing temperature but was much lower at all temperatures in the erect ‘Ouachita’ than in the trailing cultivars ‘Lock Ness’ and ‘Sweet Royalla’. In all cultivars, FBI occurred earliest at 16 °C, whereas little or no FBI took place in ‘Ouachita’ and ‘Lock Ness’ at 12 °C. Growth cessation was earliest at 16 °C where it occurred in early September in all cultivars, suggesting a critical daylength of approximately 14 h. At variance from earlier statements, FBI started in lateral buds situated several nodes below the apex and progressed in both acropetal and basipetal directions as previously reported for red raspberry. Winter chill at 0 °C enhanced flowering in spring in marginally induced plants of all cultivars except ‘Ouachita’ grown at 12 °C, which remained vegetative in spring. The results suggest that temperature is as important as daylength for FBI in biennial-fruiting blackberry, and that winter chilling may enhance flowering and yield potential in partially induced plants.

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3