Effects of Hydrogen-Rich Water on Postharvest Physiology in Scales of Lanzhou Lily during Storage

Author:

Liu Xingjuan1,Fang Hua1,Huang Panpan1,Feng Li1,Ye Fujin1,Wei Lijuan1,Wu Xuetong1,Zhang Hongsheng1,Liao Weibiao1ORCID

Affiliation:

1. College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China

Abstract

Hydrogen gas (H2) is considered as a signaling molecule and plays multiple roles in plant growth. However, the effect of H2 on postharvest physiology in lily scales during storage has not been reported. In this study, the regulatory roles of hydrogen-rich water (HRW, a H2 donor, a concentration of 0.45 mM for 100% HRW) in water status, ion balance, and nutrients in Lanzhou lily (Lilium davidii var. unicolor) scales were investigated. The scales were soaked in HRW for 12 d, and sampling was performed every 3 d for a total of 5 times. The results show that HRW (0, 10, 50, and 100%) increased the fresh weight, dry weight, relative water content, and water loss rate in lily scales, with maximum biological response at 50% HRW. Treatment with 50% HRW significantly increased the K+ content and K+/Na+ ratio in lily scales and decreased Na+ content. The Na+ K+-ATPase, and PM H+-ATPase activities were also increased by 50% HRW treatment. Meanwhile, 50% HRW up-regulated the expression of AKT1 and HA3 genes and down-regulated the expression of NHX2 and SOS1 genes. In addition, 50% HRW treatment significantly increased the expression level of PIP1;5, PIP2A, TIP1;3, and TIP2;2 genes. Treatment with 50% HRW significantly increased the content of water-soluble carbohydrate, sucrose, glucose, and fructose in lily scales, and decreased the content of starch. In addition, 50% HRW treatment significantly increased the activity of α-amylase, β-amylase, total amylase, sucrose synthase, and sucrose phosphate synthase. Collectively, H2 might enhance the water retention capacity and nutrient content in lily scales by maintaining ion balance, regulating aquaporin, and increasing sugar-metabolizing enzyme activity, thereby prolonging the storage period of postharvest scales of Lanzhou lily.

Funder

the National Natural Science Foundation of China

the Key Research and Development Program of Gansu Province, China

the National Key Research and Development Program

the Research Fund of Higher Education of Gansu, China

the Natural Science Foundation of Gansu Province, China

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3