Effect of Heat Stress on Root Architecture, Photosynthesis, and Antioxidant Profile of Water Spinach (Ipomoea aquatica Forsk) Seedlings

Author:

Wang Xin123,Altaf Muhammad Ahsan123ORCID,Hao Yuanyuan123,Wang Zhiwei123ORCID,Zhu Guopeng123ORCID

Affiliation:

1. Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China

2. Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China

3. Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China

Abstract

Crop productivity around the world is being seriously affected by adverse environmental conditions. High temperature (HT) stress has severely hampered plant growth, yield, and quality. Water spinach is a significant heat-resilient green leafy vegetable that can mitigate prolonged HT stress. However, the morphological, physiological, and biochemical alterations that occur in its response to heat stress remain unknown. In this study, the physiological response to HT stress in water spinach plants with different temperature (25-control, 30, 35, 40, 45 °C) tolerances was investigated. When plants were subjected to HT over a long period of time, their growth was stunted. The results showed that no significant difference was seen between the control (25 °C) and 30 °C for some traits (root shoot fresh weight, root morphological traits, and leaf gas exchanges parameters). Further, HT (35, 40, and 45 °C) stress significantly reduced the growth status, the gas exchange parameters, the pigment content, the photosystem function, and the root architecture system of water spinach. Conversely, HT stress considerably enhanced secondary metabolites in terms of total phenolics, flavonoids, soluble sugars, and anthocyanin content. Furthermore, heat stress remarkably increased the accumulation of reactive oxygen species (ROS) and caused cellular membrane damage. HT stress effectively altered the antioxidant defense system and caused oxidative damage. Generally, HT has an adverse effect on the enzyme activity of water spinach, leading to cell death. However, the current study found that temperatures ≥35 °C had an adverse effect on the growth of water spinach. Further research will be needed to examine the mechanism and the gene expression involved in the cell death that is caused by temperature stress in water spinach plants.

Funder

Natural Science Foundation of Hainan Province

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3