miR398 Attenuates Heat-Induced Leaf Cell Death via Its Target CSD1 in Chinese Cabbage

Author:

Cao Biting,Jiang Jianxia,Bai Jinjuan,Wang Xuan,Li Yajie,Shao Wenna,Hu Shengwu,He Yuke,Yu XiangORCID

Abstract

Previous research has shown that miR398 contributed to plant thermotolerance by silencing its target gene COPPER/ZINC SUPEROXIDE DISMUTASE1 (CSD1) in Arabidopsis thaliana. However, the phylogenesis of miR398 and CSD1 in Brassica crop and their role in regulating leaf cell death under heat stress remains unexplored. Here, we characterized the homologous genes of miR398a and CSD1 in Brassica rapa ssp. pekinensis (Chinese cabbage) and found miR398a abundance was accumulated under heat stress (38 °C and 46 °C for 1 h) in Chinese cabbage, while the expression level of its targets BraCSD1-1 and BraCSD2-1 were downregulated. To further explore their role in heat response, we constructed the transgenic plants overexpressing artificial miR398a (aBra-miR398a), Bra-miR398a target mimic (Bra-MIM398a), and BraCSD1-1 in Chinese cabbage for genetic study. Under high temperatures, p35S::aBra-miR398a lines reduced the areas of leaf cell death and delayed the leaf cell death. By contrast, p35S::Bra-MIM398a and p35S::BraCSD1-1 plants enlarged the areas of leaf cell death and displayed the earliness of leaf cell death. Finally, we found that the expression level of stress-responsive genes BraLEA76, BraCaM1, BraPLC, BraDREB2A, and BraP5CS increased in transgenic plants overexpressing aBra-miR398a, which may contribute to their resistance to heat-induced leaf cell death. Taken together, these results revealed the function of Bra-miR398a in attenuating leaf cell death to ensure plant thermotolerance, indicating that the miR398-CSD1 module could be potential candidates for heat-resistant crop breeding.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3