Identification of Major Loci and Candidate Genes for Anthocyanin Biosynthesis in Broccoli Using QTL-Seq

Author:

Liu Chunqing,Yao Xueqin,Li Guangqing,Huang Lei,Wu Xinyan,Xie Zhujie

Abstract

Anthcyanins determine the colors of flowers, fruits, and purple vegetables and act as important health-promoting antioxidants. BT 126 represents a broccoli variety with a high content of anthocyanins (5.72 mg/g FW). Through QTL-seq bulk segregant analysis, the present study aimed to determine the quantitative trait loci (QTLs) involved in anthocyanin biosynthesis in the F2 population (n = 302), which was obtained by crossing BT 126 with a non-anthocyanin-containing SN 60. The whole-genome resequencing of purple (n = 30) and green (n = 30) bulk segregates detected ~1,117,709 single nucleotide polymorphisms (SNPs) in the B. oleracea genome. Two QTLs, tightly correlated with anthocyanin biosynthesis (p < 0.05), were detected on chromosomes 7 (BoPur7.1) and 9 (BoPur9.1). The subsequent high-resolution mapping of BoPur9.1 in the F2 population (n = 280) and F3 population (n = 580), with high-throughput genotyping of SNPs technology, narrowed the major anthocyanin biosynthesis QTL region to a physical distance of 73 kb, containing 14 genes. Among these genes, Bo9g174880, Bo9g174890, and Bo9g174900 showed high homology with AT5G07990 (gene encoding flavonoid 3′ hydroxylase), which was identified as a candidate gene for BoPur9.1. The expression of BoF3’H in BT 126 was significantly higher than that in SN60. Multiple biomarkers, related to these QTLs, represented potential targets of marker-assisted selection (MAS) foranthocyanin biosynthesis in broccoli. The present study provided genetic insights into the development of novel crop varieties with augmented health-promoting features and improved appearance.

Funder

Shanghai Agriculture Applied Technology Development Program

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3