Improved Waterlogging Tolerance in Roots of Cucumber Plants after Inoculation with Arbuscular Mycorrhizal Fungi

Author:

Xiang Nan1,Liu Zhen1,Tian Xiao1,Wang Dan1,Hashem Abeer2,Abd_Allah Elsayed Fathi3ORCID,Wu Qiang-Sheng1ORCID,Zou Ying-Ning1

Affiliation:

1. College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China

2. Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia

3. Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia

Abstract

Mycorrhizal symbiosis enhances host plant resistance to various unfavorable environmental stresses, but whether and how it also enhances waterlogging tolerance in cucumber plants is not known. The objective of this study was to analyze the effect of Paraglomus occultum inoculation on biomass production, osmolyte levels, and the expression of 12 heat shock protein 70 (Hsp70) genes and 14 plasma membrane intrinsic protein (PIP) genes in the roots of cucumber plants under a short-term waterlogging stress (WS) (5 days) condition. Although the short-term WS treatment significantly inhibited the arbuscular mycorrhizal fungal colonization of roots, the inoculation with arbuscular mycorrhizal fungi (AMFs) significantly increased leaf, stem, and root biomass under WS. AMF inoculation also significantly increased root glucose, sucrose, betaine, and proline contents, along with decreased fructose levels, compared with the uninoculated control. More CsHsp70 and CsPIP genes were up-regulated in AMF-inoculated plants than in AMF-uninoculated plants in response to WS. AMF inoculation showed no significant effect on the expression of any of the examined CsHsp70 genes under no-waterlogging stress, but it did raise the expression of 11 of 12 CsHsp70 genes under WS. AMF colonization also down-regulated or had no effect on CsPIP expression under no-waterlogging stress, whereas it up-regulated the expression of 12 of the 14 CsPIP genes under WS. It is concluded that AMF inoculation enhances waterlogging tolerance in cucumber plants by increasing osmolyte levels and stress-responsive gene (CsPIP and CsHsp70) expression.

Funder

2023 Undergraduate Innovation and Entrepreneurship Training Program of Yangtze University

Distinguished Scientist Fellowship Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3