Determining Moisture Content of Basil Using Handheld Near-Infrared Spectroscopy

Author:

Gorji Reyhaneh1ORCID,Skvaril Jan1ORCID,Odlare Monica1ORCID

Affiliation:

1. Future Energy Center, School of Business, Society and Engineering, Mälardalen University, 722 20 Västerås, Sweden

Abstract

Accurate and rapid determination of moisture content is essential in crop production and decision-making for irrigation. Near-infrared (NIR) spectroscopy has been shown to be a promising method for determining moisture content in various agricultural products, including herbs and vegetables. This study tested the hypothesis that NIR spectroscopy is effective in accurately measuring the moisture content of Genovese basil (Ocimum basilicum L.), with the objective of developing a respective calibration model. Spectral data were obtained from a total of 120 basil leaf samples over a period of six days. These included freshly harvested and detached leaves, as well as those left in ambient air for 1–6 days. Five spectra were taken from each leaf using a handheld NIR spectrophotometer, which covers the first and second overtones of the NIR spectral region: 950–1650 nm. After the spectral acquisition, the leaves were weighed for fresh mass and then put in an oven for 72 h at 80 °C to determine the dry weight and calculate the reference moisture content. The calibration model was developed using multivariate analysis in MATLAB, including preprocessing and regression modeling. The data obtained from 75% of the samples were used for model training and 25% for validation. The final model demonstrates strong performance metrics. The root mean square error of calibration (RMSEC) is 2.9908, the root mean square error of cross-validation (RMSECV) is 3.2368, and the root mean square error of prediction (RMSEP) reaches 2.4675. The coefficients of determination for calibration (R2C) and cross-validation (R2CV) are consistent, with values of 0.829 and 0.80, respectively. The model’s predictive ability is indicated by a coefficient of determination for prediction (R2P) of 0.86. The range error ratio (RER) stands at 11.045—highlighting its predictive performance. Our investigation, using handheld NIR spectrophotometry, confirms NIR’s usefulness in basil moisture determination. The rapid determination offers valuable insights for irrigation and crop management.

Funder

Richertska stiftelsen/SWECO

VINNOVA

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3