Exploring Leaf Anthocyanin Concentrations and Light Effects on Lettuce Growth

Author:

Palsha Peyton Lou1,van Iersel Marc W.1ORCID,Dickson Ryan William2,Seymour Lynne3ORCID,Yelton Melanie4,Ferrarezi Rhuanito Soranz1ORCID

Affiliation:

1. Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences, Athens, GA 30605, USA

2. Department of Horticulture, University of Arkansas, 316 Plant Sciences Building, Fayetteville, AR 72701, USA

3. Department of Statistics, University of Georgia, 310 Herty Drive, Athens, GA 30602, USA

4. Grow Big Consultants, 1519 Masonic Avenue, San Francisco, CA 94117, USA

Abstract

Anthocyanins are secondary metabolites classified as water-soluble, non-photosynthetic pigments with the potential ability to shield chloroplasts from excess light energy. This study investigated the morphological and physiological responses of six lettuce (Lactuca sativa) cultivars with different leaf anthocyanin contents grown in a greenhouse under different supplemental photosynthetic photon flux densities (PPFD). Cultivars ‘Cherokee’, ‘Teodore’, ‘Rex’, and ‘Rouxai’ decreased in specific leaf area with increasing PPFD, respectively. We observed that growth in cultivars with higher leaf anthocyanin content (‘Cherokee’ and ‘Rouxai’) increased with increasing PPFD. Light use efficiency (LUE) is an important physiological parameter affecting biomass accumulation, and cultivars ‘Cherokee’, ‘Rex’, ‘Teodore’, and ‘Rouxai’ had the highest LUE and shoot weight. We found that red lettuce varieties, especially ‘Cherokee’ and ‘Rouxai’, showed increased shoot dry weight as light intensity increased. Interestingly, these varieties also had the highest anthocyanin levels in their leaves. This suggests that higher anthocyanin content might contribute to the increased shoot dry weight under higher light intensity, although this was mainly evident in ‘Cherokee’.

Funder

USDA-NIFA-SCRI

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3