Discrimination of Fungicide-Contaminated Lettuces Based on Maximum Residue Limits Using Spectroscopy and Chemometrics

Author:

Steidle Neto Antonio José1ORCID,de Lima João L. M. P.2ORCID,Jardim Alexandre Maniçoba da Rosa Ferraz3ORCID,Lopes Daniela de Carvalho1ORCID,Silva Thieres George Freire da4ORCID

Affiliation:

1. Department of Agrarian Sciences, Federal University of São João del-Rei—UFSJ, Campus Sete Lagoas, Sete Lagoas 35701-970, MG, Brazil

2. Marine and Environmental Sciences Centre—MARE, Aquatic Research Network—ARNET, Department of Civil Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-788 Coimbra, Portugal

3. Department of Biodiversity, Institute of Biosciences, São Paulo State University—UNESP, Rio Claro 13506-900, SP, Brazil

4. Department of Agricultural Engineering, Federal Rural University of Pernambuco—UFRPE, Recife 52171-900, PE, Brazil

Abstract

The fast and effective monitoring of agrochemical residues is essential for assuring food safety, since many agricultural products are sprayed with pesticides and commercialised without waiting for the pre-harvest interval. In this study, we investigated the use of spectral reflectance combined with principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) to evaluate the discrimination of fungicide-contaminated lettuces, considering three maximum residue limits (MRLs) [3.5, 5, and 7 mg carbon disulphide (CS2) kg−1]. The non-systemic Mancozeb fungicide (dithiocarbamate) was adopted in this research. Spectral reflectance (Vis/NIR) was measured by a hand-held spectrometer connected to a clip probe with an integrating sphere. The lettuce spectra were pre-treated (centring, standard normal variate, and first derivative) before data processing. Our findings suggest that PCA recognised inherent similarities in the fungicide-contaminated lettuce spectra, categorising them into two distinct groups. The PLS-DA models for all MRLs resulted in high accuracy levels, with correct discriminations ranging from 94.5 to 100% for the external validation dataset. Overall, our study demonstrates that spectroscopy combined with discriminating methods is a promising tool for non-destructive and fast discrimination of fungicide-contaminated lettuces. This methodology can be used in industrial food processing, enabling large-scale individual analysis and real-time decision making.

Funder

Foundation for Research Support of the Minas Gerais State

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3