Evaluation of the Resistance of Bitter Cucumber (Momordica charantia) to Saline Stress through Physical, Biochemical, and Physiological Analysis

Author:

Ostaci Ștefănica1ORCID,Slabu Cristina1ORCID,Marta Alina Elena1ORCID,Jităreanu Carmenica Doina1

Affiliation:

1. Department of Plant Science, Iasi University of Life Sciences, 700490 Iasi, Romania

Abstract

Momordica charantia is a climbing plant often used in traditional medicine to treat a large number of diseases, including diabetes. Salinity is one of the main stressors faced by plants, affecting almost half of irrigated agricultural land and constantly increasing. The aim of this study was to determine the resistance of some bitter cucumber genotypes to salt stress by means of dry matter analysis, chlorophyll a, chlorophyll b, malondialdehyde content, chlorophyll fluorescence, and potassium (K)/silicon (Si) and calcium (Ca)/silicon (Si) atomic ratios. Two varieties of bitter cucumber and three experimental lines were used for the experiment. Treatments with different saline solutions (100 mM of NaCl and 200 mM of NaCl) were applied and compared with an untreated control (0 mM of NaCl). The analyses revealed an increase in the dry matter content of the varieties subjected to salt stress. The Line 4 genotype showed an increase of up to 37.2% compared to the control when treated with 200 mM of NaCl. Following the analysis of the chlorophyll a content, a 38% decrease in its amount compared to the control was observed when treated with 100 mM of saline and 58.6% when treated with 200 mM of NaCl in genotype Line 4. Line 3 showed an increase in the chlorophyll a content compared to the control by 53% in the case of saline treatment with 200 mM. After the analysis of the chlorophyll b content, a 44% decrease was revealed in the case of Line 4 in the variant treated with 100 mM compared to the control and a 61% decrease in the 200 mM NaCl treatment. The highest increase in the concentration of malondialdehyde was recorded in the case of Line 4 in the variant treated with 200 mM of NaCl by 41% compared to the control. The maximum quantum yield of PS II decreased in the treated variants compared to the control plants. The most pronounced difference compared to the control was registered in the case of Line 4, where the treatment with 100 mM of NaCl caused a decrease of 16%, and the treatment with 200 mM caused a decrease of 25%. In the case of the atomic ratio, significant decreases in K and Ca were observed in the NaCl-treated variants. The observed differences between the values obtained for each studied genotype highlight the different degrees of their resistance to salinity.

Publisher

MDPI AG

Reference69 articles.

1. Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency;Joseph;Asian Pac. J. Trop. Dis.,2013

2. Anti-diabetic Activity of Momordica Charantia or Bitter Melon: A Review;Chanda;Acta Sci. Pharm. Sci.,2019

3. Using bitter melon to treat diabetes;Abascal;Altern. Altern. Ther.,2005

4. Chemical Composition of Momordica charantia L. Fruits;Yuwai;J. Agric. Food Chem.,1991

5. Variation of Mineral Composition in Different Fruit Parts of Bitter Gourd (Momordica charantia L.);Singla;Biol. Trace Elem. Res.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3