Biological Control Potential of Bacillus subtilis Isolate 1JN2 against Fusarium Wilt on Cucumber

Author:

Yang Wei1,Wang Lan1,Li Xiao1,Yan Haixia2,Zhong Beibei1,Du Xinru1,Guo Qi1,He Tingting1,Luo Yuming1

Affiliation:

1. Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an 223300, China

2. Agro-Tech Extension and Service Center of Huai’an, Huai’an 223300, China

Abstract

Cucumber is one of the top ten vegetables globally and is widely cultivated worldwide. However, Fusarium wilt, caused by Fusarium oxysporum f. sp. Cucumerinum, is one of the most serious soil-borne diseases in cucumber cultivation, causing significant economic losses. Biological control has great potential in the prevention of cucumber wilt disease, but the mechanism involved still needs further research. In this study, biocontrol isolate Bacillus subtilis 1JN2, which was isolated in our previous work, was evaluated in field conditions against Fusarium wilt, and the rhizosphere fungal diversity was analyzed. The results indicated that the biocontrol efficacy of B. subtilis 1JN2 reached 58.5% compared with the blank control, and the population density of F. oxysporum in the rhizosphere decreased from 495 copies/g of soil before inoculation to 20 copies/g 14 days after treatment. High-throughput sequencing demonstrated that after an inoculation of 1JN2, the populations that decreased significantly include the genera of Olpidium and Pseudallescheria, from more than 20% to less than 8%. And the most increased population belonged to the family Chaetomiaceae, from 6.82% to 18.77%, 12.39%, 44.41%, and 19.41% at the four sample time points after treatment. In addition, soil-related enzyme activities, including catalase, soil dehydrogenase, alkaline phosphatase, and polyphenol oxidase, were analyzed before and after treatment with 1JN2. The results indicated that all the enzyme activities showed an upward trend following inoculation. These findings demonstrate the potential of using B. subtilis 1JN2 as a biocontrol agent for controlling Fusarium wilt in cucumber.

Funder

Natural Science Foundation for Higher Education Institutions of Jiangsu Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3