Abstract
In response to agriculture’s contribution to surface water quality, considerable effort is being made to develop best management practices to reduce nutrient loss. To evaluate the efficacy of gypsum as a horticultural media amendment for controlling phosphorus (P) leaching, flue gas desulfurization (FGD) gypsum was added to a standard horticultural growth medium at 0, 2.5, 5, 10 or 15% (v/v). FGD gypsum was either mixed with the growing medium or placed at the bottom of the containers. A fast-release or a control-release fertilizer was top-dressed to containers. The greatest P leaching occurred with the fertilizer-only treatments (no gypsum). Dissolved reactive P (DRP) losses were highest on the initial day of measurement for the fast-release fertilizer and then decreased rapidly. There was a delayed release of DRP from the controlled-release fertilizer. Increasing rates of FGD gypsum addition resulted in decreasing DRP leaching concentration loss and load. The FGD gypsum decreased leachate DRP concentration loss by a maximum of 75%, with an average decrease of 46%. Mixing the FGD gypsum with the medium (an easier/less expensive means of incorporation) was most effective with the fast-release fertilizer. These preliminary results indicate that less gypsum may be needed to reduce P loss from fast-released fertilizer as opposed to control-release fertilizer. FGD gypsum remained effective in reducing DRP loss throughout the experiment.
Subject
Horticulture,Plant Science
Reference41 articles.
1. Temporal and spatial variability in non-point source phosphorus in relation to agricultural production and terrestrial indicators: The Beaver Brook case study, Pike River basin, Quebec;Michaud,2004
2. Context for re-evaluating agricultural source phosphorus loadings to the Great Lakes
3. Increased variability and sudden ecosystem state change in Lake Winnipeg, Canada, caused by 20th
century agriculture
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献