Influence of Flue Gas Desulfurization Gypsum on Phosphorus Loss from a Horticultural Growth Medium

Author:

Watts Dexter Brown,Runion George Brett,Torbert Henry AllenORCID

Abstract

In response to agriculture’s contribution to surface water quality, considerable effort is being made to develop best management practices to reduce nutrient loss. To evaluate the efficacy of gypsum as a horticultural media amendment for controlling phosphorus (P) leaching, flue gas desulfurization (FGD) gypsum was added to a standard horticultural growth medium at 0, 2.5, 5, 10 or 15% (v/v). FGD gypsum was either mixed with the growing medium or placed at the bottom of the containers. A fast-release or a control-release fertilizer was top-dressed to containers. The greatest P leaching occurred with the fertilizer-only treatments (no gypsum). Dissolved reactive P (DRP) losses were highest on the initial day of measurement for the fast-release fertilizer and then decreased rapidly. There was a delayed release of DRP from the controlled-release fertilizer. Increasing rates of FGD gypsum addition resulted in decreasing DRP leaching concentration loss and load. The FGD gypsum decreased leachate DRP concentration loss by a maximum of 75%, with an average decrease of 46%. Mixing the FGD gypsum with the medium (an easier/less expensive means of incorporation) was most effective with the fast-release fertilizer. These preliminary results indicate that less gypsum may be needed to reduce P loss from fast-released fertilizer as opposed to control-release fertilizer. FGD gypsum remained effective in reducing DRP loss throughout the experiment.

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Reference41 articles.

1. Temporal and spatial variability in non-point source phosphorus in relation to agricultural production and terrestrial indicators: The Beaver Brook case study, Pike River basin, Quebec;Michaud,2004

2. Context for re-evaluating agricultural source phosphorus loadings to the Great Lakes

3. Increased variability and sudden ecosystem state change in Lake Winnipeg, Canada, caused by 20th century agriculture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3