Combined Study of Transcriptome and Metabolome Reveals Involvement of Metabolites and Candidate Genes in Flavonoid Biosynthesis in Prunus avium L.

Author:

Fu Baochun1ORCID,Tian Yongqiang1

Affiliation:

1. Pomology Institute, Shanxi Agricultural University, Taiyuan 030031, China

Abstract

Sweet cherry (Prunus avium L.) is a popular fruit tree grown for its juicy fruit and pleasing appearance. The fruit pf the sweet cherry contains active antioxidants and other chemical compounds essential for human health. For this study, we performed the transcriptomics and metabolomics analysis using young Green Peel (GP) and mature Red Peel (RP) from sweet cherries to understand the underlying genetic mechanism regulating fruit development and ripening. Using high-throughput RNA sequencing and ultra-performance liquid chromatography, with quadrupole time-of-flight tandem mass spectrometry, respectively, metabolic and transcript profiling was obtained. Relative to GP, there were equal quantities of pronouncedly varied metabolites in RP (n = 3564). Differentially expressed genes (DEGs, n = 3564), containing 45 transcription factor (TF) families, were recorded in RP. Meanwhile, 182 differentially expressed TF (DETF) members of 37 TF families, were displayed in abundance in RP compared to GP sweet cherries. The largest quantities of DETFs were members of the ERF (25) and basic helix–loop–helix (bHLH) (19) families, followed by the MYB (18), WRKY (18), and C2H2 (12) families. Interestingly, most ERF genes were down-regulated, whereas CCCH genes were mainly up-regulated in RP. Other DETFs exhibited significant variations. In addition, RT-QPCR results and metabolomics data together with transcriptomic data revealed that the abundance of catechin, epicatechin, rhoifolin, myricetin, keracyanin, and the other six glycosyltransferase genes was highly increased in RP when compared to GP sweet cherries. The relatively higher expression of DETFs, metabolite, and flavonoid biosynthesis in RP sweet cherries suggests the accumulation of distinct metabolites that cause red coloring during fruit development and ripening. Thus, the metabolomics and transcriptomic analysis of the current study are powerful tools for providing more valuable information for the metabolic engineering of flavonoids biosynthesis in sweet cherries. They are also helpful in understanding the relationship between genotype and phenotype.

Funder

Shanxi Agricultural University

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3