Multi-Objective Optimal Integration of Solar Heating and Heat Storage into Existing Fossil Fuel-Based Heat and Power Production Systems

Author:

Wang GuangxuanORCID,Blondeau JulienORCID

Abstract

Increasing the share of Renewable energy sources in District Heating (DH) systems is of great importance to mitigate their CO2 emissions. The combined integration of Solar Thermal Collectors (STC) and Thermal Energy Storage (TES) into existing Combined Heat and Power (CHP) systems can be a very cost-effective way to do so. This paper aims at finding the optimal design of STC and TES systems integrated in existing CHP’s considering two distinct objectives: economic profitability and environmental impact. To do so, we developed a three-stage framework based on Pareto-optimal solutions generated by multi-objective optimization, a Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)-entropy method to select the optimal solution, followed by the definition of final Operation strategy. We proposed relevant improvement of the state-of-the-art models used in similar analysis. We also applied the proposed methodology to the case of a representative, 12 MWth CHP plant. Our results show that, while the addition of TES or STC alone results in limited performances and/or higher costs, both the cost and the CO2 emissions can be reduced by integrating the optimal combination of STC and TES. For the selected, optimal solution, carbon emissions are reduced by 10%, while the Annual Total Cost (ATC) is reduced by 3%. It also improves the operational flexibility and the efficiency by peak load shaving, load valley filling and thus by decreasing the peak load boiler operation. Compared to the addition of STC alone, the use of TES results in an increased efficiency, from 88% to 92%. The optimal share of STC is then increased from 7% to 10%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference37 articles.

1. Mapping and Analyses of the Current and Future (2020–2030). Heating/Cooling Fuel Deployment—Executive Summary https://energy.ec.europa.eu/mapping-and-analyses-current-and-future-2020-2030-heatingcooling-fuel-deployment-fossilrenewables-1_en

2. Renewable Energy Statistics https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Renewable_energy_statistics

3. Renewable Energy in District Heating and Cooling https://www.irena.org/publications/2017/Mar/Renewable-energy-in-district-heating-and-cooling

4. Technology Data: Generation of Electricity and District Heating https://ens.dk/sites/ens.dk/files/Analyser/technology_data_catalogue_for_el_and_dh.pdf

5. Power Plant https://www.verkis.com/projects/energy-production/geothermal-energy/nr/936

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3