Mapping Water Quality in Nearshore Reef Environments Using Airborne Imaging Spectroscopy

Author:

Hondula Kelly L.1ORCID,König Marcel1ORCID,Grunert Brice K.2ORCID,Vaughn Nicholas R.1ORCID,Martin Roberta E.13ORCID,Dai Jie1ORCID,Jamalinia Elahe1,Asner Gregory P.13ORCID

Affiliation:

1. Center for Global Discovery and Conservation Science, Arizona State University, Hilo, HI 96720, USA

2. Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA

3. School of Ocean Futures, Arizona State University, Hilo, HI 96720, USA

Abstract

Coral reefs are threatened globally by compounding stressors of accelerating climate change and deteriorating water quality. Water quality plays a central role in coral reef health. Yet, accurately quantifying water quality at large scales meaningful for monitoring impacts on coral health remains a challenge due to the complex optical conditions typical of shallow water coastal systems. Here, we report the performance of 32 remote sensing water quality models for suspended particulate matter and chlorophyll concentrations as well as colored dissolved organic matter absorption, over concentration ranges relevant for reef ecology using airborne imaging spectroscopy and field measurements across 62 stations in nearshore Hawaiian waters. Models were applied to reflectance spectra processed with a suite of approaches to compensate for glint and other above-water impacts on reflectance spectra. Results showed reliable estimation of particulate matter concentrations (RMSE = 2.74 mg L−1) and accurate but imprecise estimation of chlorophyll (RMSE = 0.46 μg L−1) and colored dissolved organic matter (RMSE = 0.03 m−1). Accurately correcting reflectance spectra to minimize sun and sky glint effects significantly improved model performance. Results here suggest a role for both hyperspectral and multispectral platforms and rapid application of simple algorithms can be useful for nearshore water quality monitoring over coral reefs.

Funder

Arizona State University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3