The Diverse Mountainous Landslide Dataset (DMLD): A High-Resolution Remote Sensing Landslide Dataset in Diverse Mountainous Regions

Author:

Chen Jie1ORCID,Zeng Xu1,Zhu Jingru1ORCID,Guo Ya1,Hong Liang2,Deng Min1,Chen Kaiqi1

Affiliation:

1. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China

2. College of Tourism & Geography Science, Yunnan Normal University, Kunming 650500, China

Abstract

The frequent occurrence of landslides poses a serious threat to people’s lives and property. In order to evaluate disaster hazards based on remote sensing images via machine learning means, it is essential to establish an image database with manually labeled boundaries of landslides. However, the existing datasets do not cover diverse types of mountainous landslides. To address this issue, we propose a high-resolution (1 m) diverse mountainous landslide remote sensing dataset (DMLD), including 990 landslide instances across different terrain in southwestern China. To evaluate the performance of the DMLD, seven state-of-the-art deep learning models with different loss functions were implemented on it. The experiment results demonstrate not only that all of these deep learning methods with different characteristics can adapt well to the DMLD, but also that the DMLD has potential adaptability to other geographical regions.

Funder

Major scientific and technological projects of Yunnan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3