Application of Soft Computing Techniques for Predicting Thermal Conductivity of Rocks

Author:

Samaei MasoudORCID,Massalow Timur,Abdolhosseinzadeh Ali,Yagiz SaffetORCID,Sabri Mohanad Muayad SabriORCID

Abstract

Due to the different challenges in rock sampling and in measuring their thermal conductivity (TC) in the field and laboratory, the determination of the TC of rocks using non-invasive methods is in demand in engineering projects. The relationship between TC and non-destructive tests has not been well-established. An investigation of the most important variables affecting the TC values for rocks was conducted in this study. Currently, the black-boxed models for TC prediction are being replaced with artificial intelligence-based models, with mathematical equations to fill the gap caused by the lack of a tangible model for future studies and developments. In this regard, two models were developed based on which gene expression programming (GEP) algorithms and non-linear multivariable regressions (NLMR) were utilized. When comparing the performances of the proposed models to that of other previously published models, it was revealed that the GEP and NLMR models were able to produce more accurate predictions than other models were. Moreover, the high value of R-squared (equals 0.95) for the GEP model confirmed its superiority.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3